Slant submersions in paracontact geometry
نویسندگان
چکیده
منابع مشابه
Special connections in almost paracontact metric geometry
Two types of properties for linear connections (natural and almost paracontact metric) are discussed in almost paracontact metric geometry with respect to four linear connections: Levi-Civita, canonical (Zamkovoy), Golab and generalized dual. Their relationship is also analyzed with a special view towards their curvature. The particular case of an almost paracosymplectic manifold giv...
متن کاملspecial connections in almost paracontact metric geometry
two types of properties for linear connections (natural and almost paracontact metric) are discussed in almost paracontact metric geometry with respect to four linear connections: levi-civita, canonical (zamkovoy), golab and generalized dual. their relationship is also analyzed with a special view towards their curvature. the particular case of an almost paracosymplectic manifold giv...
متن کاملSemi-slant Pseudo-riemannian Submersions from Indefinite Almost Contact 3-structure Manifolds onto Pseudo-riemannian Manifolds
In this paper, we introduce the notion of a semi-slant pseudoRiemannian submersion from an indefinite almost contact 3-structure manifold onto a pseudo-Riemannian manifold. We investigate the geometry of foliations determined by horizontal and vertical distributions and provide a non-trivial example. We also find a necessary and sufficient condition for a semi-slant submersion to be totally geo...
متن کاملThe differential geometry of almost Hermitian almost contact metric submersions
Three types of Riemannian submersions whose total space is an almost Hermitian almost contact metric manifold are studied. The study is focused on fundamental properties and the transference of structures. 1. Introduction. In this paper, we discuss some geometric properties of Riemannian submersions whose total space is an almost Hermitian almost contact metric manifold. If the base space is an...
متن کاملA new slant on seismic imaging: Migration and integral geometry
A new approach to seismic migration formalizes the classical diffraction (or common-tangent) stack by relating it to linearized seismic inversion and the generalized Radon transform. This approach recasts migration as the problem of reconstructing the earth’s acoustic scattering potential from its integrals over isochron surfaces. The theory rests on a solution of the wave equation with the geo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics
سال: 2019
ISSN: 2651-477X
DOI: 10.15672/hujms.458085